Silencing synapses
نویسندگان
چکیده
منابع مشابه
Silencing Synapses with DREADDs
In this issue of Neuron, Stachniak et al. (2014) determine that the chemogenetic silencer hM4Di-DREADD suppresses presynaptic glutamate release, and by generating an axon-targeted hM4Di variant they demonstrate that it can be used to locally silence synaptic transmission in neural circuits.
متن کاملSapap3 deletion causes mGluR5-dependent silencing of AMPAR synapses.
Synaptic transmission mediated by AMPA-type glutamate receptors (AMPARs) is regulated by scaffold proteins in the postsynaptic density. SAP90/PSD-95-associated protein 3 (SAPAP3) is a scaffold protein that is highly expressed in striatal excitatory synapses. While loss of SAPAP3 is known to cause obsessive-compulsive disorder-like behaviors in mice and reduce extracellular field potentials in t...
متن کاملRe-silencing of silent synapses unmasks anti-relapse effects of environmental enrichment.
Environmental enrichment (EE) has long been postulated as a behavioral treatment for drug addiction based on its preventive effects in animal models: rodents experiencing prior EE exhibit increased resistance to establishing drug taking and seeking. However, the therapeutic effects of EE, namely, the effects of EE when applied after drug exposure, are often marginal and transient. Using incubat...
متن کاملGenetic silencing of olivocerebellar synapses causes dystonia-like behaviour in mice
Theories of cerebellar function place the inferior olive to cerebellum connection at the centre of motor behaviour. One possible implication of this is that disruption of olivocerebellar signalling could play a major role in initiating motor disease. To test this, we devised a mouse genetics approach to silence glutamatergic signalling only at olivocerebellar synapses. The resulting mice had a ...
متن کاملPersistent, exocytosis-independent silencing of release sites underlies homosynaptic depression at sensory synapses in Aplysia.
The synaptic connections of Aplysia sensory neurons (SNs) undergo dramatic homosynaptic depression (HSD) with only a few low-frequency stimuli. Strong and weak SN synapses, although differing in their probabilities of release, undergo HSD at the same rate; this suggests that the major mechanism underlying HSD in these SNs may not be depletion of the releasable pool of vesicles. In computational...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Prion
سال: 2013
ISSN: 1933-6896,1933-690X
DOI: 10.4161/pri.23327